В целом о вакууме и вакуумных системах

Свойства вакуума
Особенности вакуумных систем

Вакуумные материалы и уплотнители

Вакуумные материалы
Уплотнители и и смазки

На заметку

Проверка герметичности вакуумной системы
Измерение и контроль вакуума - Контрольно-измерительная аппаратура
Оглавление
Проверка герметичности вакуумной системы
Испытание под давлением (опрессование)
Испытание с помощью трансформатора Тесла
Применение внешнего вакуумного колпака
Галоидные течеискатели
Все страницы

 

При проектировании любого вакуумного аппарата обычно задается величина допустимого натекания атмосферного воздуха внутрь аппарата через неплотности.


Например, для высоковакуумных и сверхвысоковакуумных насосов и агрегатов допустимую величину натекания выбирают из соотношения:

где S — средняя скорость откачки насоса (или агрегата); р0— предельное давление. Натекание газа через стенки вакуумной системы и через уплотнения в местах соединений, а также газоотделение (десорбция) зависят от материалов, из которых изготовлен аппарат, и от качества его изготовления. За единицу натекания обычно принимают 1 л*мкм рт. ст./с, т. е. величину натекания, равную 1 л/с при давлении в системе 1 мкм или 10-3 мм рт. ст.

Величина допустимого натекания зависит от технологических требований к аппарату, объема вакуумной системы и производительности откачивающих аппаратов. Нужно учесть, что при работе промышленных вакуумных аппаратов воздух откачивается вакуумными насосами непрерывно, т. е. здесь имеем динамическую вакуумную систему. Величину допустимого натекания следует выбрать такой, чтобы принятая система насосов успевала откачивать натекающий в систему газ. При очень больших объемах аппаратов достижение малых значений натекания представляет значительные трудности.

Жесткий режим натекания может быть оправдан только при необходимости получения очень низкого давления, когда большое значение приобретает десорбция газов внутри самой вакуумной системы.

При проектировании следует также задать величину минимального давления р1, до которого нужно откачать систему, прежде чем производить проверку натекания.

Все детали и узлы вакуумного аппарата до сборки следует проверять на натекание. Для определения величины натекания проверяемый узел должен быть надежно уплотнен с помощью заглушек и присоединен к вакуумному насосу. Внутри проверяемой системы откачкой вакуумным насосом создается давление P1, после чего систему отсоединяют от насоса и давление в замкнутой системе повышается из-за натекания через неплотности.

По истечении времени т с измеряют давление р2 в системе и величину натекания подсчитывают по формуле

где Pi и р2 — выражены в мм рт. ст.; V— объем откачиваемой системы в л.

Чтобы устранить влияние разоотделения, перед проверкой натекания следует производить длительную откачку системы, а также применять манометры с охлаждаемыми ловушками. Если ловушки нет, можно обмотать стеклянную трубку, соединяющую манометр с системой, ватой и залить ее жидким азотом.

Способы отыскания течей в вакуумных системах. Для отыскания течей применяют различные способы, дающие хорошие результаты и не требующие дорогостоящего оборудования. Однако для обнаружения очень малых Течей,особенно в крупных металлических вакуумных системах, применяют специальные течеискатели.

 


Если внутри испытуемого объекта создано избыточное по сравнению с атмосферным давление воздуха или азота, то при наличии больших течей слышно шипение газа, выходящего через отверстие, а пламя горелки, поднесенной к месту течи, колышется. Более мелкие течи можно обнаружить с использованием мыльной пленки. Если деталь не очень велика, то ее погружают в мыльный раствор; более крупные вакуумные системы покрывают снаружи мыльной водой.

 

Внутрь системы нагнетается воздух или какой-либо другой газ под избыточным давлением 1,1—7 кгс/см2 (в зависимости от механической прочности аппарата), который, проникая через неплотности, образует мыльные пузырьки на внешней поверхности аппарата. Таким способом можно обнаружить течи до 3•1O-3 л мм рт. ст./мин. Можно также деталь, внутри которой создано избыточное давление, погружать в воду и наблюдать за появлением в воде пузырьков. Такой способ менее чувствителен, чем способ с применением мыльной пленки.

Если внутри вакуумной системы находится под повышенным давлением углекислый газ, а для нахождения течи применяют аммиак, или наоборот, то место натекания можно обнаружить, так как вблизи него образуется дым. Чувствительность этого способа примерно та же, что и способа мыльной пленки.


Внутри вакуумной системы разрежение создается с помощью вращательного масляного насоса. Затем незаземленным концом провода вторичной обмотки трансформатора Тесла прикасаются к поверхности вакуумной системы снаружи. В газе, находящемся внутри системы, возбуждается тлеющий электрический разряд. Свечение происходит при давлениях от нескольких миллиметров до 5•1O-2 мм рт. ст.

Наблюдать за разрядом можно только при наличии смотрового стекла. Кроме того, система должна быть изготовлена из электроизоляционного материала, поэтому способ применяют в основном для систем из стекла. Если конец провода (электрод) катушки Тесла окажется вблизи отверстия в стекле, то с конца провода внутрь системы через это отверстие пробьется яркая искра; тем самым точно устанавливается место течи. Следует иметь в виду, что при длинной искре и длительном воздействии трансформатора на одну точку системы возможен пробой стеклянной стенки. Течь можно найти, если на расстоянии нескольких сантиметров от нее нет металлических частей установки, в противном случае возникнет искра между металлом и концом катушки.

Для проверки герметичности в месте соединения металла со стеклом следует возбудить в системе газовый разряд и провести снаружи ватой, смоченной бензином или метиловым спиртом. При наличии течи пары этих веществ проникнут внутрь системы и изменится цвет газового разряда. Такой способ следует применять только в случае очень малых течей, так как проникающие через большую течь органические пары загрязняют вакуумную систему. Можно также возбудить в системе газовый разряд трансформатором Тесла, а затем обдувать систему снаружи светильным или углекислым газом. При попадании в систему углекислого газа цвет разряда становится синевато-зеленым, при попадании светильного газа — белым.

Искровой течеискатель ИО 60-010 отечественного производства предназначен для проверки герметичности стеклянных вакуумных систем и для определения степени достигнутого разрежения. Его применяют и в металлических системах при наличии в них деталей из стекла или при установке специального стеклянного разрядника.

Разряд возбуждается прикосновением электрода течеискателя к стеклу или к металлическому стержню, впаянному в стекло. Течи в шлифовых соединениях, как и в металлических частях системы, могут быть обнаружены при давлениях от 1 до 5•1O-3 мм рт. ст. по изменению цвета разряда при проникновении сквозь них пробного вещества.

Течеискатель выполнен в виде небольшого блока с присоединенным через гибкий шланг высокочастотным электродом. Гибкий металлический стержень электрода снабжен пластмассовой рукояткой.

 

Недостатком способа является невозможность его применения в цельнометаллических системах, а также ограниченная область давлений.Определение течи с помощью разрядной трубки. Способ разрядной трубки применим для вакуумных систем, изготовленных из любого материала. Если включить разрядную трубку в высоковакуумную систему между диффузионным и механическим форвакуумным насосом, а затем обдувать систему пробным газом (углекислым газом, метаном, парами спирта, ацетона, бензина, эфира), то при попадании газа через течь внутрь вакуумной системы цвет разряда изменится. Наиболее чувствительным индикатором является углекислый газ.

При отсутствии легколетучих углеводородов можно опрыскивать систему водой; при попадании паров воды в разрядную трубку свечение становится голубым. Углекислый газ дает также голубое свечение, водород — красное. Чувствительность такого метода можно повысить применением спектроскопа для наблюдения за разрядом. Если в системе отсутствует высоковакуумный диффузионный насос, то разрядную трубку подключают к трубопроводу, идущему от системы к механическому насосу. Для отыскания течей таким методом наиболее пригодны давления 0,1—1 мм рт. ст.

Не следует забывать о возможности взрыва водорода в присутствии электрической искры. Гелий имеет такую же проникающую способность, как и водород, но менее взрывоопасен.Проверка герметичности путем временного уплотнения отдельных участков системы. Вакуумную систему откачивают до высокого вакуума

и затем отсоединяют от насоса. После отсоединения участка системы от насоса давление в нем постепенно повышается. Если в этот момент место течи снаружи покрыть вакуумной замазкой (например, пластилином), то скорость повышения давления уменьшается.

Применяют иногда и окраску наружной поверхности. Этот способ более чувствителен, так как время наблюдения за изменением давления может быть сколь угодно большим. Такой метод наиболее прост (с точки зрения оснащения приборами). Однако у него есть существенный недостаток. Вакуумная замазка или красящее вещество заполняют поры и трещины, но такое уплотнение непрочно и при эксплуатации отверстие, куда попала замазка, может снова стать источником натекания.


При таком способе отыскания течи уменьшают давление над тем участком наружной поверхности вакуумной системы, где предполагают наличие течи. При снижении внешнего давления над течью уменьшается давление внутри системы, которая в это время непрерывно откачивается насосом. Внешнюю поверхность испытуемого объекта необходимо плотно соединить с колпаком, из которого откачивается воздух механическим насосом.

Способы обнаружения мест натекания с помощью манометров. Если, например, обдувать вакуумную систему струей водорода, то при наличии течи давление в системе резко повысится, так как водород проникает в систему значительно быстрее воздуха. При измерении давления тепло-электрическим манометром для обдувания системы следует выбирать газ или пар, имеющий по сравнению с воздухом значительно большую или значительно меньшую теплопроводность. В этом отношении водород имеет преимущество, так как его теплопроводность значительна и при попадании его в манометрическую лампу температура нити понижается. С помощью теплоэлектрического манометра можно обнаружить натекание до 10-2 л-мкм рт. ст/с.

Во время отыскания течи необходима непрерывная откачка системы вакуумным насосом.Манометр сопротивления следует расположить между диффузионным и форвакуумным насосом. Для нахождения течи применяют дифференциальный манометр сопротивления (рис. 530).

Две одинаковые манометрические лампы включены в два плеча моста, но одна из них присоединена к вакуумной системе через охлаждаемую ловушку. Если смачивать систему с наружной стороны спиртом, ацетоном, бензином, водой, то в систему, а' следовательно, в баллон лампы, не имеющей ловушки, попадут пары этих веществ, проходящие через неплотности в вакуумной системе, и равновесие моста нарушится. Дифференциальным манометром сопротивления можно обнаружить натекание до 1 * 10-3 л*мкм рт. ст./с. По этому принципу работает портативный течеискатель ТП-49. При давлении ниже 5•1O-4 мм рт. ст. можно использовать ионизационный манометр, который позволяет обнаружить течи размером до 1О-4 л-мкм рт. ст./с.

Если в ионизационный манометр попадут водород, пары ацетона или эфира, то ионный ток возрастет; если же пробным газом является гелий, имеющий более высокий ионизационный потенциал, чем воздух, то ионный ток в лампе уменьшится. С помощью специального ионизационного манометра, чувствительного к водороду, находят весьма малые течи.

 


Люминесцентный способ обнаружения течей. Испытываемый прибор погружают в раствор люминофора. Раствор проникает в течь, и после испарения растворителя можно обнаружить светящуюся точку, образуемую в месте течи накопившимся люминофором. Место свечения обнаруживается облучением ультрафиолетовыми лучами. Способ применяют в производстве электровакуумных приборов.


Действие галоидных течеискателей основано на свойстве платины, накаленной до 800—900° С, увеличивать эмиссию положительных ионов в присутствии галоидов. Эффект наблюдается как при атмосферном давлении, так и в вакууме. Это позволяет обнаруживать течь по натеканию в нее галоидов, а также позволяет обнаруживать утечки в системах, содержащих галоиды.

Чувствительный элемент галоидного течеискателя представляет собой платиновый диод с анодом прямого накала, навитым на керамическую трубку. Эмитируемые анодом ионы воспринимаются вторым электродом — коллектором, соединенным с усилителем постоянного тока. Стрелочный прибор на выходе усилителя регистрирует увеличение ионного тока при попадании галоидов в межэлектродное пространство чувствительного элемента. Сигнал дублируется звуковым индикатором.

 Внешний вид галоидного течеискателя

Отечественные галоидные течеискатели состоят из датчика течеискателя,содержащего чувствительный элемент, и измерительного блока. Переносный течеискатель ГТИ-3 обнаруживает течи в системах, заполненных изнутри галоидосодержащей газовой смесью. Чувствительность течеискателя составляет 2,4*10-3 л-мкм рт. ст./с фреона-12, что позволяет установить утечку в атмосферу 0,5 г фреона-12 в год.

Натекание фреона 2,4-10-3 л-мкм рт. ст/с вызывает отклонение стрелки не менее чем на 30% самой чувствительной шкалы. Чтобы обнаружить большие течи, следует уменьшить накал датчика.

Датчик течеискателя ГТИ-3 выполнен в виде щупа-пистолета. Непосредственно за чувствительным элементом, расположенным в передней части щупа, размещено вентиляционное устройство, благодаря которому воздух проходит через межэлектродное пространство датчика. Щуп перемещается вдоль испытываемой поверхности. При повышении концентрации галоидов вблизи течи течеискатель подает сигнал.

При работе с галоидным течеискателем фоновые сигналы могут вызывать пары растворителей и конструкционных материалов, содержащих галоиды. Течеискатель нельзя поэтому использовать в помещении, содержащем газы с примесью галоидов. Загрязнения, составляющие 6—10%, могут вывести прибор из строя.

Вакуумно-атмосферный галоидный течеискатель ВАГТИ-4 предназначен не только для проверки вакуумных систем на герметичность путем создания внутри этих систем избыточного давления галоидосодержащего газа, также и для проверки путем обдувания оболочек вакуумных систем галоидами. Соответственно этому течеискатель снабжен двумя датчиками — атмосферным и вакуумным.

Атмосферный датчик предназначен для обследования опрессованных систем, выполнен в виде щупа-пистолета и аналогичен датчику течеискателя ГТИ-3.

Вакуумный датчик течеискателя выполнен в виде отрезка трубопровода с фланцами, внутри которого размещен чувствительный элемент. Датчик включается в трубопровод предварительного разрежения. Проникая через течь в вакуумную систему во время обдувания ее галоидосодержащим газом, пробный газ попадает и в чувствительный элемент, что вызывает в нем изменение ионного тока, регистрируемое индикаторами.

Чувствительность течеискателя регулируется переключением сопротивлений во входной цепи усилителя. Три диапазона имеют кратность 10. Переход на последнюю, самую чувствительную шкалу отвечает пятикратному увеличению чувствительности по сравнению с предыдущей. Первая, самая грубая шкала предусмотрена для измерения фонового тока, определяемого общим уровнем парциального давления галоидов. Наблюдение за содержанием галоидов необходимо в связи с тем, что длительное их воздействие на работающий чувствительный элемент приводит к отравлению эмиттера. При больших фоновых токах следует обеспечить очистку помещений от галоидов. Восстановления характеристик эмиттера можно достичь прокаливанием чувствительного элемента в чистой атмосфере.

Чувствительность течеискателя с вакуумным датчиком характеризуется минимально индицируемым парциальным давлением фреона 5- 10-8 мм рт. ст. Такое давление вызывает отклонение стрелки выходного прибора не менее чем на 20% самой чувствительной шкалы и соответствует потоку фреона через датчик 5•10-8 л*мкм рт. ст./с при эффективной скорости его откачки 1 л/с.

Вакуумный датчик предназначен для работы при давлениях от 10-2 до 1 мм рт. ст.

С помощью атмосферного датчика-щупа течеискатель обнаруживает истечение в атмосферу 2,5•1O-3 л-мкм рт. ст./с фреона (Ф-12 или Ф-22). Постоянная времени измерительного блока меняется от 2,5 до 5 с при переходе с грубой на самую чувствительную шкалу.

Техническая характеристика течеискателя ВАГТИ-4

 

Батарейный галоидный течеискатель БГТИ-5 предназначен для работы ев помещениях и на открытом воздухе. Его применяют для испытаний больших объемов, находящихся под избыточным давлением пробного газа. Питание_от батареи аккумуляторов. В выносном щупе имеется чувствительный элемент, аналогичной применяемому в течеискателях ГТИ-3 и ВАГТИ-4, и вентиляционное устройство. Течеискатель хорошо работает в полевых условиях благодаря расширенному диапазону рабочих температур, нечувствительности приборов к запыленности воздуха и к ветру. Для обеспечения возможности длительных испытаний течеискатель БГТИ-3 комплектуется зарядным устройством для одновременной зарядки всех аккумуляторов в батарее.

Чувствительность течеискателя к утечкам фреона Ф-12 или Ф-22 не менее 1,5 г в год. Соответствующий этой утечке поток 7 •10-3 л-мкм рт. ст./с составляет по крайней мере 30% шкалы на самом чувствительном диапазоне. Постоянная времени течеискателя без удлинительных насадок не превышает 3 с. С насадкой длиной 750 мм постоянная времени увеличивается до 10 с.

Техническая характеристика течеискателя БГТИ-5

 При работе с аккумуляторами КНГК-ЮД нижняя граница изменения температур составляет 0° С.Течеискатель ГТИ-6 предназначен для проверки герметичности систем, поддающихся испытаниям опрессовкой галоидосодержащим газом, а также вакуумных систем в диапазоне давлений 10—1 мм рт. ст.Чувствительность течеискателя при работе по методу опрессовки с выносным щупом к потоку фреона не менее 1•1O-3 л*мкм рт. ст./с, а чувствительность с вакуумным датчиком к парциальному давлению фреона 10-8 мм рт. ст. Постоянная времени течеискателя с выносным щупом менее 1,5 с.

 

Масс-спектрометрический течеискатель выделяет пробный газ из общей смеси поступающих в него газов благодаря разделению ионов газа по массам под действием электрического и магнитного полей. Течеискатель отбирает газовую смесь из испытываемого объема, подвергаемого извне воздействию пробного газа. Если снаружи через течь внутрь вакуумной системы попадет пробный газ, то он попадет и в течеискатель, который в этот момент подаст соответствующий сигнал. Может быть и наоборот — течеискатель отбирает газовую смесь из пространства, окружающего испытываемый объем, впрессованный изнутри пробным газом.

Попадающая в течеискатель газовая смесь поступает в ионный источник, где газ ионизируется и формируется ионный пучок. В анализаторе происходит разложение этого пучка на компоненты по массам и выделение пучка ионов пробного вещества. В приемном устройстве регистрируется и измеряется ток выделенных ионов.

Таким образом, пробное вещество регистрируется вне зависимости от присутствия других газов.

Передвижные масс-спектрометрические течеискатели ПТИ-6 и ПТИ-7 представляют собой масс-спектрометры, настроенные на регистрацию гелия, применяемого в качестве пробного газа. Масс-спектрометрический анализ газов в течеискателях производится в магнитном анализаторе, работающем в однородном магнитном поле, направленном перпендикулярно движению ионов.

Ионы образуются электронной бомбардировкой. Моноэнергетический пучок формируется электрическим полем, созданным между электродами источника ионов. Выделенный в анализаторе пучок ионов гелия поступает на коллектор, связанный с электрометрическим усилителем постоянного Тока. Усилитель позволяет измерять токи от 10"10 до 10~14 А, что обеспечивает индикацию парциальных давлений гелия от 5- 10-8 до 5-10-12 мм рт. ст.

Течеискатель имеет собственную вакуумную систему, состоящую из механического и пароструйного насосов с воздушным охлаждением. Он также имеет ловушки, предохраняющие от загрязнения масс-спектрометрический анализатор. Вакуумная система позволяет прокачивать через течеискатель поток газа 2 л-мкм рт. ст./с при давлении в анализаторе 2-10"4 мм рт. ст. Регистрация в этих условиях парциального давления гелия 5 • 10"12 мм рт. ст. определяет способность течеискателей индицировать концентрацию гелия, равную 2,5-10-8 л-мкм рт. ст./с.

Вакуумная система течеискателей сообщается с испытываемыми объемами через дросселирующий вентиль Ду 32, позволяющий плавно регулировать давление в камере анализатора. В течеискателях предусмотрена возможность изоляции масс-спектрометрического анализатора от вакуумной системы при размораживании охлаждаемой ловушки и для ремонта при работающей вакуумной системе.

 

 

Гелиевый масс-спектрометрический течеискатель СТИ-8 предназначен для высокочувствительной проверки герметичности систем с малым газоотделением. Вакуумная система течеискателя выполнена на металлических уплотнениях. В течеискателе возможны два режима проверки герметичности: режим предварительных испытаний с откачкой пароструйным насосом и режим высокочувствительных испытаний при откачке цеолитовым насосом.

Минимальная течь, обнаруживаемая течеискателей в режиме высокочувствительных испытаний, составляет от 5-10-10 до 5-10-11 л-мкм рт. ст./с при подаче гелия соответственно от 1 до 10 мин. Выбор гелия в качестве пробного газа объясняется почти полным его отсутствием в окружающей атмосфере и среди газов, выделяемых стенками вакуумной аппаратуры, а также хорошим проникновением его даже в самые незначительные течи.

Промышленные испытания изделий больших габаритов на плотность показали, что вакуумные испытания гелиевым течеискателей значительно эффективнее и дешевле, чем воздушные и водородные. Воздушные и водородные испытания изделий больших габаритов очень трудоемки и громоздки, а также не безопасны для обслуживающего персонала. Испытания гелиевым течеискателей позволяют определить неплотность в любом аппарате независимо от его габаритов. Наиболее рационально этим методом можно определить неплотность при остаточных давлениях от 5 до 0,1 мм рт. ст.

Обнаруженные неплотности быстро устраняются электросваркой, если аппарат находится под разрежением. При проверке и откачке больших объемов следует применять для предварительной откачки от атмосферного давления вращательные многопластинчатые, поршневые или водокольцевые насосы, а вращательные масляные насосы включать после создания предварительного давления порядка десятых долей атмосферы.

На рис. 531 приведена схема установки для определения течи методом гелиевого щупа. Откачиваемый объем 8 заполняется гелиево-воздушной смесью с концентрацией гелия от 5% и выше. В шланге 6 создается разрежение (откачка производится насосом 2), в результате чего гелий, проникающий через неплотность и попадающий в щуп 9, засасывается через шланг 6 в течеискатель. Величина минимальной течи, которую можно обнаружить щупом, зависит от длины и диаметра шланга 6, от пропускной способности самого щупа, от концентрации гелия в объекте и от чувствительности течеискателя.

Чувствительность повышается при замене воздуха, окружающего испытываемый объект, газовой средой, не содержащей гелия. Существенно повысить чувствительность удается при замене воздуха азотом в камерах, окружающих испытываемый предмет. Система отбора газа для анализа с применением щупа усложняет измерения из-за значительных фоновых эффектов, в связи с чем предложен порционный метод отбора, предусматривающий перепуск гелия в течеискатель после удаления всех других газов цеолитовым насосом.

Качество испытаний обдуванием вакуумной системы гелием (рис. 532) и испытаний способом щупа может быть проверено способом избыточного давления. Он позволяет определить очень малую негерметичность объекта с большим внутренним газовыделением (рис. 533). В барокамере 3 создается вакуум, а в испытываемый объект 9 подается гелий.

 

 

Добавить комментарий


Защитный код
Обновить

Сейчас на сайте

Сейчас на сайте находятся:
 138 гостей на сайте
=
Рейтинг@Mail.ru