Свойства вакуума |
Особенности вакуумных систем |
контрольно-измерительная аппаратура |
Течеискатели |
Вакуумные материалы |
Уплотнители и и смазки |
Вакуумные вентили и переходники |
Запорные устройства |
Способы соединения вакуумных систем |
Общие принципы |
Подбор вакуумных насосов |
Масляные средства откачки |
Вакуумометрические приборы |
Вакуумные установки |
Сорбционные средства откачки |
Физические явления в вакууме |
Динамические масс-спектрометры - Резонансный радиочастотный масс-спектрометр |
Измерение и контроль вакуума - Контрольно-измерительная аппаратура |
Cтраница 4 из 6 Для анализа остаточного газа был предложен еще один спектрометр, использующий ВЧ-поле, который обычно называется радиочастотным масс-спектрометром).
Рис. 5.16. Трехсеточный радиочастотный масс-спектрометр Схема первого спектрометра 1 — катод; 2 — анод; 3 — коллектор. Электроны, эмиттированные накаленным катодом, вытягиваются к первой сетке (аноду), образуя ионы, которые затем ускоряются системой сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки, расположенные на равном расстоянии друг от друга. Ионы, фаза которых соответствует ВЧ-полю, получают дополнительную энергию, если время их пролета сквозь сеточный каскад равно одному периоду колебания поля Откуда (5.19) Подробное изучение прибора Беннета [24] было выполнено Щербаковой. Исследованный масс-спектрометр содержал три трех-сеточных каскада, расположенных на некотором расстоянии друг от друга (пространство дрейфа). Развертка масс-спектра осуществлялась изменением ускоряющего напряжения либо частоты.
Известны и другие конструкции радиочастотных спектрометров, используемых для анализа остаточного газа. У большинства из них имеется один ускоряющий каскад со значительным числом сеток. Так, прибор конструкции Варальди [26], выпускаемый серийно, содержит 12 сеток. Эта модель имеет низкое разрешение, соответствующее 50%-ной седловине между пиками, вплоть до массы 40; общий диапазон анализируемых масс составляет 2—15 а. е. м. Этот прибор способен регистрировать самые низкие парциальные давления вплоть до 10-9 Па при точности измерений ±10%, а ионный ток, создаваемый в цепи первой ускоряющей сетки, является мерой полного давления. Робинсон [27] разработал радиочастотный масс-спектрометр на основе прибора Бойда, который использовался для анализа плазмы и практически не отличался от масс-спектрометра Бен-нета. В этой конструкции сетки заменены металлическими колечками диаметром 2 мм и длиной 1 мм, расположенными на расстоянии 1 мм друг от друга1). На рис. 5.17 представлены схе-
Рис. 5.17. Радиочастотный масс-спектрометр Робинсона: а — конструктивная схема; б — распределение потенциала между электродами. ма этого устройства, а также распределение потенциала между электродами. Разделение ионов осуществляется под действием задерживающего потенциала, прикладываемого к сдвоенной сетке 2, после чего происходит их ускорение к коллектору с помощью сетки 3. Положительный потенциал V, прикладываемый к электроду, расположенному перед коллектором, служит для отражения вторичных электронов. Изменение напряжения на этой супрессорной сетке позволяет повысить разрешающую способность радиочастотного масс-спектрометра в ~1,3 раза при неизменной чувствительности. К недостаткам радиочастотного масс-спектрометра относятся его невысокие чувствительность и разрешающая способность. Однако ввиду компактности, а также отсутствия магнитного поля приборы этого типа находят широкое применение в промышленных установках, особенно для управления процессами, требующими непрерывного контроля парциальных давлений определенных соединений. Другой тип радиочастотного масс-спектрометра, используемый для анализа остаточных газов, разработан Третнером [29]. В этом устройстве ионы совершают колебания в электрическом поле между двумя параллельными электродами. Частота колебаний зависит от массы иона и потенциала, прикладываемого к этим электродам. При совпадении частоты этих колебаний с частотой ВЧ-поля ионы приобретают дополнительную энергию, преодолевают потенциальный барьер и попадают на коллектор. Сканирование осуществляется путем изменения частоты ВЧ-поля. Несмотря на то что фарвитрон обладает довольно низкой разрешающей способностью (порядка 10 а. е. м.), его часто используют для непрерывного контроля остаточного газа. |
= | |