Свойства вакуума |
Особенности вакуумных систем |
контрольно-измерительная аппаратура |
Течеискатели |
Вакуумные материалы |
Уплотнители и и смазки |
Вакуумные вентили и переходники |
Запорные устройства |
Способы соединения вакуумных систем |
Общие принципы |
Подбор вакуумных насосов |
Масляные средства откачки |
Вакуумометрические приборы |
Вакуумные установки |
Сорбционные средства откачки |
Физические явления в вакууме |
Магниторазрядные насосы |
Разное - Применение вакуумной техники | ||||||
Cтраница 1 из 4 Принцип действия и основные характеристики. Широкое распространение в отечественной промышленности магниторазрядных насосов объясняется их высокими техническими характеристиками, простотой эксплуатации и обслуживания, высокой надежностью и большим ресурсом работы.
Основная откачка активных газов магниторазрядными насосами осуществляется в результате хемосорбции газов постоянно возобновляемой пленкой титана. Непременным условием эффективной и устойчивой работы магниторазрядных насосов, как и геттерных и геттерно-ионных насосов, является соответствие количества распыляемого титана количеству поступающего газа.
Принцип устройства магнито-разрядного насоса иллюстрируется рис. 4-14.
Плоские титановые катоды 1 и анод 2, состоящие из многих прямоугольных или круглых ячеек, образуют электродный блок, который помещается в магнитное поле, создаваемое постоянным магнитом 3. Каждое отверстие в аноде вместе с противолежащими участками катодов образует разрядную ячейку насоса. При приложении разности потенциалов между электродами разрядного блока, находящегося в вакууме, в ячейках насоса возникает электрический разряд. Для возникновения разряда достаточно случайного присутствия в разрядном промежутке нескольких электронов.
Под действием сильного магнитного и электрического полей электроны движутся по спирали вокруг оси разрядной ячейки. На своем пути электроны производят ионизацию газа. Образующиеся положительные ионы, бомбардируя катод, распыляют титан из катодных пластин. Поскольку основная часть распыляемых частиц титана представляет собой электрически нейтральные атомы и молекулы, они осаждаются на все поверхности электродов, но в основном на анод. Активные газы, попадая на непрерывно возобновляемую пленку титана, хемосорбируются ею. Катоды также поглощают газы, но из-за постоянного распыления большей части их поверхности вклад катодов в процесс откачки активных газов незначителен.
Таким образом, основным механизмом при откачке активных газов является хемосорбция газов непрерывно напыляемой на аноде пленкой титана. Наряду с этим в магниторазрядных насосах имеет место проникновение ионов в материал катода. Последнее характерно дла откачки легких газов — водорода и гелия. Водород лег
ко диффундирует в титане, образуя твердые растворы. Непрерывное поступление ионов водорода на поверхность катодов создает повышенную концентрацию водорода на поверхности, которая приводит к диффузии водорода в глубь катодов. Если в откачиваемом сосуде присутствует только водород, поглощение его титановым катодом является основным механизмом откачки, поскольку распыление материала катода в результате бомбардировки его ионами водорода мало и основной механизм откачки магниторазрядных насосов — хемосорбция напыляемой пленкой титана — в значительной степени ослабляется.
Если откачивается смесь водорода с более тяжелыми газами, то распыление титана происходит интенсивнее и заметная часть водорода откачивается на других поверхностях насоса. Откачка тяжелых инертных газов преимущественно осуществляется катодами. В силу больших размеров и соответственно малой подвижности ионов этих газов диффузия их в глубь катода практически отсутствует. При бомбардировке катодов ионами инертных газов, например аргона, поверхност
ный слой распыляется, в результате чего вновь высвобождается ранее поглощенный аргон. Таким образом, ионы аргона необратимо поглощаются только небольшими участками катодов, которые не подвержены эффективной бомбардировке ионами газа. На рис. 4-15 отчетливо видны участки катода, поглощающие инертные газы. Внедрение ионов инертных газов в материал катода сопровождается замуровыванием ионов распыляемым титаном. Такой механизм хотя и не создает большой быстроты действия, является основным при откачке инертных газов мат ниюразрядным насосом. Таблица 4-1 Относительная быстрота действия диодных магниторазрядных насосов
Поскольку химическая активность различных газов и эффективность распыления титана их ионами различны, быстрота действия магниторазрядных насосов существенно зависит от рода откачиваемого газа. Относительная быстрота действия магниторазрядных насосов по разным газам, выраженная в процентах от быстроты действия по воздуху, представлена в табл. 4-1.
Конструкции магниторазрядных насосов весьма разнообразны, что объясняется различным их назначением. Отечественной промышленностью выпускаются не-охлаждаемые магнито-разрядные диодные насосы типа НЭМ с быстротой действия от 10 до 7000 л/с, охлаждаемые диодные насосы типа НОРД с быстротой действия от 10 до 1000 л/с и триодные насосы MaPT и ТРИОН-150 с быстротой действия 30 и 150 л/с соответственно.
Электродный блок насоса типа НЭМ (рис. 4-16) состоит из трех титановых катодов / и двух ячеистых анодов 2 из нержавеющей стали, жестко соединенных между со бой и изолированных друг от друга с помощью керамических изоляторов 3. Внутри корпуса насоса (рис. 4-17) они располагаются
в соответствующих карманах. На аноды электродных блоков через высоковольтные вакуумные электрические вводы от блока питания подается высокое положительное напряжение (7 кВ). Катоды имеют надежный электрический контакт с заземленным корпусом насоса. С внешней стороны корпуса насосов располагаются постоянные оксидно-бариевые магниты (рис. 4-18), создающие в зазоре напряженность поля 56 000 А/м (700 Э).
|
= | |