Свойства вакуума |
Особенности вакуумных систем |
контрольно-измерительная аппаратура |
Течеискатели |
Вакуумные материалы |
Уплотнители и и смазки |
Вакуумные вентили и переходники |
Запорные устройства |
Способы соединения вакуумных систем |
Общие принципы |
Подбор вакуумных насосов |
Масляные средства откачки |
Вакуумометрические приборы |
Вакуумные установки |
Сорбционные средства откачки |
Физические явления в вакууме |
Конденсаторы, работающие при давлениях выше тройной точки - Конденсаторы смешения |
Получение вакуума - Вакуумные конденсаторы | |||||
Cтраница 3 из 3 Конденсаторы смешения более просты и дешевы. Их делят на мокрые и сухие. Конденсаторы смешения применяют только для конденсации паров воды или малоценных жидкостей, так как из аппарата выходит смесь образовавшегося конденсата с водой. Они широко распространены в химической промышленности, так как имеют высокую производительность и легко могут быть защищены от коррозии. Мокрые конденсаторы отличаются тем, что из них охлаждающая вода вместе с конденсатом и неконденсирующимися газами откачивается мокровоздушным насосом. В сухих конденсаторах вода вместе с конденсатом стекает по трубе самотеком, а неконденсируюимещиеся газы откачиваются из верхней части аппарата обычным вакуумным насосом. Для достижения полной конденсации пара необходимо тщательное перемешивание, которое достигается разбрызгиванием охлаждающей воды. На рис, 244 приведена схема мокрого прямоточного конденсатора с переливными полками. Вода разбрызгивается в верхней части аппарата и перетекает с полки на полку, орошая и конденсируя пар, который движется в том же направлении. Схема конденсатора, работающего по принципу противотока, показана на рис. 245. Барометрические конденсаторы разных типов показаны на рис. 247. В табл. 43 приведены производительность барометрических конденсаторов, их габаритные размеры и масса, в табл. 44 — назначение и размеры условных проходов штуцеров в мм. К нижней части конденсатора присоединена барометрическая труба для стока воды и конденсата.
Примечание. Для всех конденсаторов, приведенных в таблице, а = 1300 мм и r= 1200 мм . * См. рис. 247, а; ** См. рис. 247, б; *** См. рис. 247, в.
Если рассчитать конденсатор таким образом, чтобы температура охлаждающей воды на выходе была близка к температуре поступающего пара, а температура отходящего воздуха была близка к температуре входящей воды, то можно добиться наименьших энергетических затрат на откачку воздуха и наименьшего расхода охлаждающей воды. Высоту барометрической трубы подбирают таким образом, чтобы cумма давления внутри аппарата и давления столба жидкости в трубе равнялась атмосферному давлению. При наилучшем вакууме давление внутри аппарата практически равно давлению насыщения пара при температуре охлаждающей воды; высота трубы должна быть не менее 10 м, но соответствует атмосферному давлению. Благодаря наличию барометрической трубы вода из конденсатора удаляется самотеком и не нужно тратить энергию на откачку воды насосом, как это делается в сухих конденсаторах низкого ровня.
Преимущества струйного конденсатора рис. 248): интенсивная теплопередача и потому большая производительность на единицу поверхности, относительно простая конструкция при низкой стоимости и, наконец, возможность конденсации коррозирующих паров без разрушения стенок конденсатора, что исключает применение специальных химически стойких материалов. Недостатки струйного конденсатора, как и других конденсаторов смешения: большой объем охлаждающей воды, необходимость доведения давления охлаждающей воды, конденсата и инертных газов от вакуума до атмосферного давления; выделение газов, растворенных в охлаждающей воде, в паровое пространство с соответствующим повышением давления. Барометрические водоструйные конденсаторы применяют в том случае, когда коррозирующие газы поступают в аппарат одновременно с паром.
|
= | |