Свойства вакуума |
Особенности вакуумных систем |
контрольно-измерительная аппаратура |
Течеискатели |
Вакуумные материалы |
Уплотнители и и смазки |
Вакуумные вентили и переходники |
Запорные устройства |
Способы соединения вакуумных систем |
Общие принципы |
Подбор вакуумных насосов |
Масляные средства откачки |
Вакуумометрические приборы |
Вакуумные установки |
Сорбционные средства откачки |
Физические явления в вакууме |
Использование стекла для вакуумной техники - Физические свойства |
Вакуумные материалы и уплотнители - Вакуумные материалы | ||||||
Cтраница 2 из 4 К важным физическим свойствам стекол, используемых в условиях сверхвысокого вакуума, относятся те, на которые влияет температура, поскольку повышение температуры весьма существенно с точки зрения обезгаживания системы. Это, в первую очередь, вязкость, являющаяся мерой твердости и жесткости стекла, и коэффициент термического расширения, от которого зависят уровни напряжений и деформаций, возникающих вследствие неравномерного нагрева, а также в местах соединений стекла с другими материалами. Как отмечалось, стекло не имеет определенной температуры плавления (отвердевания), а при нагревании теряет свойства твердого тела вследствие непрерывного уменьшения вязкости. На зависимость вязкости от температуры влияет химический состав стекла. На рис. 2.1 представлены типичные кривые изменения вязкости в зависимости от температуры T для ряда стекол, характеристики которых указаны в табл.
На кривой вязкость — температура различают четыре характерные точки, определяемые по методике Американского общества испытания материалов (ASIM) и принятые в настоящее время повсеместно. Эти точки соответствуют различным состояниям стекла при переходе твердое тело — жидкость. ![]() Различают точки закалки, отжига, размягчения и температуру обработки. Точка закалки представляет собой температуру, при которой релаксация напряжений происходит в течение нескольких часов. При температуре отжига внутренние напряжения исчезают в течение 15 мин (г) = 1012 Па*с-1). Точка размягчения определяется как температура, при которой стеклянная нить стандартного размера начинает заметно деформироваться под собственным весом, что соответствует вязкости 106,6 Па*с-1 для стекол плотностью — 2,5*103 кг*м-3. При температуре обработки стекло размягчается до такой степени, что можно вести его обработку путем выдувания, формовки, прессования и т. п. Температуре обработки соответствует вязкость 103 Па*с-1. В табл. 2.1 приведены значения указанных характерных температур для различных стекол. Температура, при которой вакуумная оболочка начинает подвергаться деформации под действием атмосферного давления, зависит от формы, толщины стенок и времени выдержки установки при этой температуре. Однако для оценки температуры, предельно допустимой для безопасного нагревания вакуумной установки, можно, в общем, исходить из значения температуры закалки. Еще более важную роль играет термическое расширение стекла. По мере нагревания стеклянная деталь расширяется, что приводит к возникновению напряжений и деформаций, которые в свою очередь могут приводить к растрескианию и разрушению стекла. Как правило, величина относительного удлинения больше у легкоплавких стекол, а для боросиликатных снижается с уменьшением содержания B2O3. При температурах ниже 3000C кривые термического расширения практически линейны, и в этом температурном диапазоне коэффициент термического расширения можно считать постоянным (табл. 2.1). С повышением температуры коэффициент термического расширения возрастает все быстрее и при температурах порядка температуры отжига становится весьма значительным. Следует отметить, что воспроизводимость характеристик и обратимость кривых свойственны только хорошо отожженным стеклам. У недостаточно отожженных стекол значения коэффициента термического расширения завышены. Термические напряжения могут возникать не только в местах спаев, но и в местах локального нагрева или охлаждения. Если температуры поверхностей стеклянной пластины различны, то нагретая поверхность будет испытывать сжатие, а более холодная — растяжение, что также может привести к образованию трещин в стекле. Возникающие в стекле растягивающие усилия зависят от градиента температуры и от свойств стекла, в первую очередь — коэффициента термического расширения. Как правило, чем меньше коэффициент термического расширения, тем больший градиент температуры выдерживает стекло без разрушения.
![]()
Так, для пирексовой стеклянной пластины растягивающее напряжение 67 МПа достигается при перепаде температур приблизительно в 5O0C, а для натриевого стекла — уже при ~15°С. На практике высокие установившиеся градиенты температур, как правило, довольно редки, тогда как кратковременные высокие градиенты встречаются довольно часто, например при первом погружении стеклянной ловушки в жидкий азот. Стекло обладает большей прочностью к мгновенному нагружению, чем к длительному. Поэтому термостойкость стекла не может быть оценена на основании одних лишь статических характеристик. Термостойкость зависит не только от величины коэффициента термического расширения, но и от формы образца, его толщины, а также способа создания напряжения — нагревом или охлаждением (последнему способу соответствуют более жесткие условия нагружения). В используемом фирмой Corning эмпирическом методе определения термостойкости стеклянную пластину определенного размера после нагрева быстро погружают в холодную воду. Максимальная температура, до которой удается нагреть стеклянную пластину без ее разрушения при резком охлаждении, и принята за характеристику термостойкости. Данные по термостойкости стекол, выпускаемых этой фирмой, представлены в табл. Следует отметить, что мягкие стекла не годятся для изготовления криогенных ловушек и других деталей вакуумных установок, подвергающихся резкому термическому нагружению. Тем не менее низкая стоимость и легкость обработки этих стекол стимулируют их широкое использование при изготовлении стеклянных баллонов электронных ламп. |
= | |